Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cureus ; 15(4): e37260, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2318261

ABSTRACT

Introduction SARS-CoV-2 is an epitheliotropic viral agent with epithelial tropism. Although the clinical significance and severity of affection is the most pronounced in the respiratory system, other organs and systems are also infected and, hence affected, such as the central nervous system, gastrointestinal tract, cardiovascular, and urinary systems. Herein, we set out to evaluate the presence and degree of morphological changes within the renal parenchyma and its relation to disease outcome. Materials and methods A retrospective non-clinical approach was utilized for the means of the study. All patients with real-time reverse transcriptase-polymerase chain reaction proven infection, subject to an autopsy performed in a period of two calendar years, were included in the study. Kidney tissue histopathology samples were analyzed using a modified Banff criteria system for acute onset and chronic changes. The results were compared for statistical significance with overall patient survival from symptom onset to death. Furthermore, SARS-CoV-2 viral presence was evaluated in renal structures by means of immunohistochemistry. Results A total of 40 patients were included in the study. Immunohistochemistry showed viral presence within a myriad of renal structured - endothelial cells, tubular cells, and podocytes. Modified Banff criteria showed significant acute changes within the parenchyma, including endotheliitis, glomerulitis, mesangial matrix expansion, tubulitis, capillaritis, arteritis, thrombosis (including thrombotic microangiopathy in four patients), and hemorrhages. Individual cases also presented with signs of rhabdomyolysis - myoglobulin casts. Signs of chronic injury were also present in most patients. However, when calculated as scores, neither acute nor chronic changes showed a correlation with time from symptom onset to death. Conclusion The results of the present study show both viral presence and a myriad of induced changes in the contents of SARS-CoV-2 infection within the renal parenchyma. The lack of correlation with the degree of changes, when compared to survival, is an encouraging fact that the changes are unlikely to play a role in direct tanatogenesis while having the potential to manifest as chronic kidney disease in the future.

2.
J Cell Mol Med ; 26(12): 3513-3526, 2022 06.
Article in English | MEDLINE | ID: covidwho-1861376

ABSTRACT

Increasing the information depth of single kidney biopsies can improve diagnostic precision, personalized medicine and accelerate basic kidney research. Until now, information on mRNA abundance and morphologic analysis has been obtained from different samples, missing out on the spatial context and single-cell correlation of findings. Herein, we present scoMorphoFISH, a modular toolbox to obtain spatial single-cell single-mRNA expression data from routinely generated kidney biopsies. Deep learning was used to virtually dissect tissue sections in tissue compartments and cell types to which single-cell expression data were assigned. Furthermore, we show correlative and spatial single-cell expression quantification with super-resolved podocyte foot process morphometry. In contrast to bulk analysis methods, this approach will help to identify local transcription changes even in less frequent kidney cell types on a spatial single-cell level with single-mRNA resolution. Using this method, we demonstrate that ACE2 can be locally upregulated in podocytes upon injury. In a patient suffering from COVID-19-associated collapsing FSGS, ACE2 expression levels were correlated with intracellular SARS-CoV-2 abundance. As this method performs well with standard formalin-fixed paraffin-embedded samples and we provide pretrained deep learning networks embedded in a comprehensive image analysis workflow, this method can be applied immediately in a variety of settings.


Subject(s)
COVID-19 , Deep Learning , Angiotensin-Converting Enzyme 2 , COVID-19/genetics , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2
3.
Pediatr Nephrol ; 37(10): 2375-2381, 2022 10.
Article in English | MEDLINE | ID: covidwho-1680823

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is seen in one-fifth of pediatric patients with COVID-19 requiring hospital admission, and is associated with increased morbidity, mortality, and residual kidney impairment. The majority of kidney pathology data in patients with COVID-19 is derived from adult case series and there is an overall lack of histologic data for most pediatric patients with COVID-19. METHODS: We assembled a multi-institutional cohort of five unvaccinated pediatric patients with COVID-19 and associated kidney dysfunction with available histology. RESULTS: Three complex patients with current or prior SARS-CoV-2 infection had multifactorial thrombotic microangiopathy with clinical features of hemolytic uremic syndrome (in two) or disseminated intravascular coagulation (in one); one died and another developed chronic kidney disease stage 5. Two with recently preceding SARS-CoV-2 infection presented with nephrotic syndrome; one had IgA vasculitis and one had minimal change disease. Within a short follow-up time, none has returned to baseline kidney function. CONCLUSION: Although uncommon, COVID-19-associated kidney injury can have significant morbidity in the unvaccinated pediatric and adolescent population. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Acute Kidney Injury , COVID-19 , IgA Vasculitis , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Adolescent , Adult , COVID-19/complications , Child , Humans , Kidney/pathology , SARS-CoV-2
4.
Inflamm Res ; 71(1): 39-56, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1525531

ABSTRACT

The COVID-19 pandemic created a worldwide debilitating health crisis with the entire humanity suffering from the deleterious effects associated with the high infectivity and mortality rates. While significant evidence is currently available online and targets various aspects of the disease, both inflammatory and noninflammatory kidney manifestations secondary to COVID-19 infection are still largely underrepresented. In this review, we summarized current knowledge about COVID-19-related kidney manifestations, their pathologic mechanisms as well as various pharmacotherapies used to treat patients with COVID-19. We also shed light on the effect of these medications on kidney functions that can further enhance renal damage secondary to the illness.


Subject(s)
COVID-19 Drug Treatment , COVID-19/physiopathology , Kidney Diseases/physiopathology , Kidney/injuries , Acute Kidney Injury/complications , Aldosterone/metabolism , Angiotensins/chemistry , Antibodies, Monoclonal, Humanized/administration & dosage , Autopsy , Biopsy , COVID-19/complications , COVID-19 Vaccines , Dexamethasone/administration & dosage , Enoxaparin/administration & dosage , Heparin/administration & dosage , Heparin, Low-Molecular-Weight/administration & dosage , Humans , Inflammation , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Kidney Diseases/complications , Kidney Transplantation , Lopinavir/administration & dosage , Pandemics , Renal Replacement Therapy , Renin-Angiotensin System , Ritonavir/administration & dosage , SARS-CoV-2
5.
J Clin Lab Anal ; : e23995, 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1520226

ABSTRACT

BACKGROUND: Renal biopsy remains the golden standard for diagnosing and monitoring IgA nephropathy (IgAN). Vascular endothelial growth factor A (VEGFA) was crucial for the survival of glomerular cells. Our aim was to screen the expression pattern of urinary, circulating and renal VEGFA in IgAN patients to reveal their relationship with renal pathology and outcomes. METHODS: Baseline VEGFA levels were determined with ELISA, real-time PCR and immunohistochemistry. Associations between VEGFA expression and clinical-pathological parameters, and renal outcomes were evaluated. RESULTS: Compared with healthy controls, urinary VEGFA level was obviously elevated in IgAN patients (76.19 ± 63.67 pg/mg Cr vs 146.67 ± 232.71 pg/mg Cr, p = 0.0291) and not correlated with serum VEGFA level. Baseline urinary VEGFA was significantly associated with gender and tubular atrophy/interstitial fibrosis by stepwise multivariate regression analysis. Urinary VEGFA was higher in male patients accompanied with higher serum creatinine, larger proportion of hypertension and recurrent hematuria than in female patients. In the kidney of IgAN patients, VEGFA were robustly expressed in the parietal epithelial cells, podocytes, mesangial cells and tubular epithelial cells. After a follow-up duration of 38.53 ± 27.14 months, IgAN patients with higher urinary VEGFA level were found to have a poorer renal outcome of renal replacement therapy (HR = 1.027, p = 0.037) or composite outcome (HR = 1.023, p = 0.039) after adjusting for confounders. CONCLUSIONS: Increased urinary VEGFA might reflect certain renal pathology and, although not fully specific, still could be served as a valuable noninvasive indicator in predicting renal progression of IgAN.

6.
Diagnostics (Basel) ; 11(11)2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1512174

ABSTRACT

BACKGROUND: We aimed to analyze clinical characteristics and find potential factors to predict poor prognosis in patients with coronavirus disease 2019 (COVID-19). METHODS: We analyzed the clinical characteristics and laboratory tests of COVID-19 patients and detected SARS-CoV-2 RNA in urine sediments collected from 53 COVID-19 patients enrolled in Renmin Hospital of Wuhan University from 31 January 2020 to 18 February 2020 with qRT-PCR analysis. Then, we classified those patients based on clinical conditions (severe or non-severe syndrome) and urinary SARS-CoV-2 RNA (URNA- or URNA+). RESULTS: We found that COVID-19 patients with severe syndrome (severe patients) showed significantly higher positive rate (11 of 23, 47.8%) of urinary SARS-CoV-2 RNA than non-severe patients (4 of 30, 13.3%, p = 0.006). URNA+ patients or severe URNA+ subgroup exhibited higher prevalence of inflammation and immune discord, cardiovascular diseases, liver damage and renal dysfunction, and higher risk of death than URNA- patients. To understand the potential mechanisms underlying the viral urine shedding, we performed renal histopathological analysis on postmortems of patients with COVID-19 and found severe renal vascular endothelium lesion characterized by an increase of the expression of thrombomodulin and von Willebrand factor, markers to assess the endothelium dysfunction. We proposed a theoretical and mathematic model to depict the potential factors that determine the urine shedding of SARS-CoV-2. CONCLUSIONS: This study indicated that urinary SARS-CoV-2 RNA detected in urine specimens can be used to predict the progression and prognosis of COVID-19 severity.

7.
J Nephrol ; 35(3): 735-743, 2022 04.
Article in English | MEDLINE | ID: covidwho-1460530

ABSTRACT

BACKGROUND: Acute kidney injury is common in patients with COVID-19, however mechanisms of kidney injury remain unclear. Since cytokine storm is likely a cause of AKI and glomerular disease, we investigated the two major transcription factors, STAT3 and NF-kB, which are known to be activated by cytokines. METHODS: This is an observational study of the postmortem kidneys of 50 patients who died with COVID-19 in the Mount Sinai Hospital during the first pandemic surge. All samples were reviewed under light microscopy, electron microscopy, and immunofluorescence by trained renal pathologists. In situ hybridization evaluation for SARS-CoV-2 and immunostaining of transcription factors STAT3 and NF-kB were performed. RESULTS: Consistent with previous findings, acute tubular injury was the major pathological finding, together with global or focal glomerulosclerosis. We were not able to detect SARS-CoV-2 in kidney cells. ACE2 expression was reduced in the tubular cells of patients who died with COVID-19 and did not co-localize with TMPRSS2. SARS-CoV-2 was identified occasionally in the mononuclear cells in the peritubular capillary and interstitium. STAT3 phosphorylation at Tyr705 was increased in 2 cases in the glomeruli and in 3 cases in the tubulointerstitial compartments. Interestingly, STAT3 phosphorylation at Ser727 increased in 9 cases but only in the tubulointerstitial compartment. A significant increase in NF-kB phosphorylation at Ser276 was also found in the tubulointerstitium of the two patients with increased p-STAT3 (Tyr705). CONCLUSIONS: Our findings suggest that, instead of tyrosine phosphorylation, serine phosphorylation of STAT3 is commonly activated in the kidney of patients with COVID-19.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/pathology , COVID-19/complications , Humans , Kidney/pathology , NF-kappa B , SARS-CoV-2 , STAT3 Transcription Factor , Signal Transduction
8.
Kidney Int ; 100(6): 1303-1315, 2021 12.
Article in English | MEDLINE | ID: covidwho-1336699

ABSTRACT

Kidney failure is common in patients with Coronavirus Disease-19 (COVID-19), resulting in increased morbidity and mortality. In an international collaboration, 284 kidney biopsies were evaluated to improve understanding of kidney disease in COVID-19. Diagnoses were compared to five years of 63,575 native biopsies prior to the pandemic and 13,955 allograft biopsies to identify diseases that have increased in patients with COVID-19. Genotyping for APOL1 G1 and G2 alleles was performed in 107 African American and Hispanic patients. Immunohistochemistry for SARS-CoV-2 was utilized to assess direct viral infection in 273 cases along with clinical information at the time of biopsy. The leading indication for native biopsy was acute kidney injury (45.4%), followed by proteinuria with or without concurrent acute kidney injury (42.6%). There were more African American patients (44.6%) than patients of other ethnicities. The most common diagnosis in native biopsies was collapsing glomerulopathy (25.8%), which was associated with high-risk APOL1 genotypes in 91.7% of cases. Compared to the five-year biopsy database, the frequency of myoglobin cast nephropathy and proliferative glomerulonephritis with monoclonal IgG deposits was also increased in patients with COVID-19 (3.3% and 1.7%, respectively), while there was a reduced frequency of chronic conditions (including diabetes mellitus, IgA nephropathy, and arterionephrosclerosis) as the primary diagnosis. In transplants, the leading indication was acute kidney injury (86.4%), for which rejection was the predominant diagnosis (61.4%). Direct SARS-CoV-2 viral infection was not identified. Thus, our multi-center large case series identified kidney diseases that disproportionately affect patients with COVID-19 and demonstrated a high frequency of APOL1 high-risk genotypes within this group, with no evidence of direct viral infection within the kidney.


Subject(s)
Acute Kidney Injury , COVID-19 , Apolipoprotein L1/genetics , Humans , Kidney , Retrospective Studies , SARS-CoV-2
9.
Clin Nephrol Case Stud ; 9: 11-18, 2021.
Article in English | MEDLINE | ID: covidwho-1106317

ABSTRACT

INTRODUCTION: Though respiratory, immune, and coagulation systems are major targets of coronavirus disease 2019 (COVID-19), kidney dysfunction, presenting with acute kidney injury (AKI), is also common. Most AKI cases in COVID-19 manifest as acute tubular injury (ATI) in conjunction with multiorgan failure. While initial renal pathological findings were limited to acute tubular necrosis and collapsing glomerulopathy, a recent case series reported a larger spectrum of findings. CASE REPORT: Here, we report a case of membranous nephropathy (MN) in an 81-year-old Hispanic man with underlying chronic kidney disease (CKD) stage 3 who developed ATI in the setting of COVID-19. The patient was hospitalized for hypoxic respiratory failure in the setting of AKI stage 3 with serum creatinine 7.1 mg/dL 6 days after a positive-SARS-CoV-2 screening. He was found to have nephrotic range proteinuria, glycosuria (with normal serum glucose), anemia, and hypoalbuminemia. Kidney biopsy showed ATI and early MN. Workup for primary and secondary MN was unrevealing, and serum PLA2R antibody was negative. No viral particles were observed in podocytes. CONCLUSION: Although the MN could be incidental, this observation raises the question of whether SARS-CoV-2 infection can trigger or worsen an underlying MN from an exaggerated immune response associated with COVID-19.

10.
Am J Kidney Dis ; 77(1): 82-93.e1, 2021 01.
Article in English | MEDLINE | ID: covidwho-851328

ABSTRACT

RATIONALE & OBJECTIVE: Kidney biopsy data inform us about pathologic processes associated with infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We conducted a multicenter evaluation of kidney biopsy findings in living patients to identify various kidney disease pathology findings in patients with coronavirus disease 2019 (COVID-19) and their association with SARS-CoV-2 infection. STUDY DESIGN: Case series. SETTING & PARTICIPANTS: We identified 14 native and 3 transplant kidney biopsies performed for cause in patients with documented recent or concurrent SARS-CoV-2 infection treated at 7 large hospital systems in the United States. OBSERVATIONS: Men and women were equally represented in this case series, with a higher proportion of Black (n=8) and Hispanic (n=5) patients. All 17 patients had SARS-CoV-2 infection confirmed by reverse transcriptase-polymerase chain reaction, but only 3 presented with severe COVID-19 symptoms. Acute kidney injury (n=15) and proteinuria (n=11) were the most common indications for biopsy and these symptoms developed concurrently or within 1 week of COVID-19 symptoms in all patients. Acute tubular injury (n=14), collapsing glomerulopathy (n=7), and endothelial injury/thrombotic microangiopathy (n=6) were the most common histologic findings. 2 of the 3 transplant recipients developed active antibody-mediated rejection weeks after COVID-19. 8 patients required dialysis, but others improved with conservative management. LIMITATIONS: Small study size and short clinical follow-up. CONCLUSIONS: Cases of even symptomatically mild COVID-19 were accompanied by acute kidney injury and/or heavy proteinuria that prompted a diagnostic kidney biopsy. Although acute tubular injury was seen among most of them, uncommon pathology such as collapsing glomerulopathy and acute endothelial injury were detected, and most of these patients progressed to irreversible kidney injury and dialysis.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , COVID-19/complications , COVID-19/pathology , Proteinuria/etiology , Proteinuria/pathology , Adult , Aged , Diagnosis, Differential , Female , Follow-Up Studies , Humans , Kidney/pathology , Male , Middle Aged
11.
J Am Soc Nephrol ; 31(9): 2205-2221, 2020 09.
Article in English | MEDLINE | ID: covidwho-725838

ABSTRACT

BACKGROUND: The incidence, severity, and outcomes of AKI in COVID-19 varied in different reports. In patients critically ill with COVID-19, the clinicopathologic characteristics of AKI have not been described in detail. METHODS: This is a retrospective cohort study of 81 patients critically ill with COVID-19 in an intensive care unit. The incidence, etiologies, and outcomes of AKI were analyzed. Pathologic studies were performed in kidney tissues from ten deceased patients with AKI. RESULTS: A total of 41 (50.6%) patients experienced AKI in this study. The median time from illness to AKI was 21.0 (IQR, 9.5-26.0) days. The proportion of Kidney Disease Improving Global Outcomes (KDIGO) stage 1, stage 2, and stage 3 AKI were 26.8%, 31.7%, and 41.5%, respectively. The leading causes of AKI included septic shock (25 of 41, 61.0%), volume insufficiency (eight of 41, 19.5%), and adverse drug effects (five of 41, 12.2%). The risk factors for AKI included age (per 10 years) (HR, 1.83; 95% CI, 1.24 to 2.69; P=0.002) and serum IL-6 level (HR, 1.83; 95% CI, 1.23 to 2.73; P=0.003). KDIGO stage 3 AKI predicted death. Other potential risk factors for death included male sex, elevated D-dimer, serum IL-6 level, and higher Sequential Organ Failure Assessment score. The predominant pathologic finding was acute tubular injury. Nucleic acid tests and immunohistochemistry failed to detect the virus in kidney tissues. CONCLUSIONS: AKI was a common and multifactorial complication in patients critically ill with COVID-19 at the late stage of the disease course. The predominant pathologic finding was acute tubular injury. Older age and higher serum IL-6 level were risk factors of AKI, and KDIGO stage 3 AKI independently predicted death.


Subject(s)
Acute Kidney Injury/pathology , Betacoronavirus , Coronavirus Infections/complications , Kidney/pathology , Pneumonia, Viral/complications , Acute Kidney Injury/etiology , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/pathology , Creatinine/blood , Critical Illness , Female , Humans , Intensive Care Units , Interleukin-6/blood , Kidney/ultrastructure , Kidney/virology , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Retrospective Studies , Risk Factors , SARS-CoV-2
12.
J Am Soc Nephrol ; 31(9): 1959-1968, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-652873

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is thought to cause kidney injury by a variety of mechanisms. To date, pathologic analyses have been limited to patient reports and autopsy series. METHODS: We evaluated biopsy samples of native and allograft kidneys from patients with COVID-19 at a single center in New York City between March and June of 2020. We also used immunohistochemistry, in situ hybridization, and electron microscopy to examine this tissue for presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: The study group included 17 patients with COVID-19 (12 men, 12 black; median age of 54 years). Sixteen patients had comorbidities, including hypertension, obesity, diabetes, malignancy, or a kidney or heart allograft. Nine patients developed COVID-19 pneumonia. Fifteen patients (88%) presented with AKI; nine had nephrotic-range proteinuria. Among 14 patients with a native kidney biopsy, 5 were diagnosed with collapsing glomerulopathy, 1 was diagnosed with minimal change disease, 2 were diagnosed with membranous glomerulopathy, 1 was diagnosed with crescentic transformation of lupus nephritis, 1 was diagnosed with anti-GBM nephritis, and 4 were diagnosed with isolated acute tubular injury. The three allograft specimens showed grade 2A acute T cell-mediated rejection, cortical infarction, or acute tubular injury. Genotyping of three patients with collapsing glomerulopathy and the patient with minimal change disease revealed that all four patients had APOL1 high-risk gene variants. We found no definitive evidence of SARS-CoV-2 in kidney cells. Biopsy diagnosis informed treatment and prognosis in all patients. CONCLUSIONS: Patients with COVID-19 develop a wide spectrum of glomerular and tubular diseases. Our findings provide evidence against direct viral infection of the kidneys as the major pathomechanism for COVID-19-related kidney injury and implicate cytokine-mediated effects and heightened adaptive immune responses.


Subject(s)
Betacoronavirus , Coronavirus Infections/pathology , Kidney/pathology , Pneumonia, Viral/pathology , Adult , Aged , Betacoronavirus/isolation & purification , Biopsy , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/immunology , Female , Humans , Kidney/ultrastructure , Kidney/virology , Kidney Diseases/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , SARS-CoV-2
13.
J Am Soc Nephrol ; 31(8): 1683-1687, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-186288

ABSTRACT

BACKGROUND: A significant fraction of patients with coronavirus disease 2019 (COVID-19) display abnormalities in renal function. Retrospective studies of patients hospitalized with COVID-19 in Wuhan, China, report an incidence of 3%-7% progressing to ARF, a marker of poor prognosis. The cause of the renal failure in COVID-19 is unknown, but one hypothesized mechanism is direct renal infection by the causative virus, SARS-CoV-2. METHODS: We performed an autopsy on a single patient who died of COVID-19 after open repair of an aortic dissection, complicated by hypoxic respiratory failure and oliguric renal failure. We used light and electron microscopy to examine renal tissue for evidence of SARS-CoV-2 within renal cells. RESULTS: Light microscopy of proximal tubules showed geographic isometric vacuolization, corresponding to a focus of tubules with abundant intracellular viral arrays. Individual viruses averaged 76 µm in diameter and had an envelope studded with crown-like, electron-dense spikes. Vacuoles contained double-membrane vesicles suggestive of partially assembled virus. CONCLUSIONS: The presence of viral particles in the renal tubular epithelium that were morphologically identical to SARS-CoV-2, and with viral arrays and other features of virus assembly, provide evidence of a productive direct infection of the kidney by SARS-CoV-2. This finding offers confirmatory evidence that direct renal infection occurs in the setting of AKI in COVID-19. However, the frequency and clinical significance of direct infection in COVID-19 is unclear. Tubular isometric vacuolization observed with light microscopy, which correlates with double-membrane vesicles containing vacuoles observed with electronic microscopy, may be a useful histologic marker for active SARS-CoV-2 infection in kidney biopsy or autopsy specimens.


Subject(s)
Acute Kidney Injury/complications , Coronavirus Infections/complications , Kidney Tubules/virology , Pneumonia, Viral/complications , Acute Kidney Injury/mortality , Aortic Dissection/surgery , Autopsy , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Epithelial Cells/pathology , Humans , Kidney Tubules/pathology , Kidney Tubules/ultrastructure , Male , Middle Aged , Nephritis/physiopathology , Pandemics , Pneumonia, Viral/mortality , Prognosis , Respiratory Insufficiency , Retrospective Studies , SARS-CoV-2
14.
Kidney Int ; 98(1): 219-227, 2020 07.
Article in English | MEDLINE | ID: covidwho-115633

ABSTRACT

Although the respiratory and immune systems are the major targets of Coronavirus Disease 2019 (COVID-19), acute kidney injury and proteinuria have also been observed. Currently, detailed pathologic examination of kidney damage in critically ill patients with COVID-19 has been lacking. To help define this we analyzed kidney abnormalities in 26 autopsies of patients with COVID-19 by light microscopy, ultrastructural observation and immunostaining. Patients were on average 69 years (19 male and 7 female) with respiratory failure associated with multiple organ dysfunction syndrome as the cause of death. Nine of the 26 showed clinical signs of kidney injury that included increased serum creatinine and/or new-onset proteinuria. By light microscopy, diffuse proximal tubule injury with the loss of brush border, non-isometric vacuolar degeneration, and even frank necrosis was observed. Occasional hemosiderin granules and pigmented casts were identified. There were prominent erythrocyte aggregates obstructing the lumen of capillaries without platelet or fibrinoid material. Evidence of vasculitis, interstitial inflammation or hemorrhage was absent. Electron microscopic examination showed clusters of coronavirus-like particles with distinctive spikes in the tubular epithelium and podocytes. Furthermore, the receptor of SARS-CoV-2, ACE2 was found to be upregulated in patients with COVID-19, and immunostaining with SARS-CoV nucleoprotein antibody was positive in tubules. In addition to the direct virulence of SARS-CoV-2, factors contributing to acute kidney injury included systemic hypoxia, abnormal coagulation, and possible drug or hyperventilation-relevant rhabdomyolysis. Thus, our studies provide direct evidence of the invasion of SARSCoV-2 into kidney tissue. These findings will greatly add to the current understanding of SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections/pathology , Kidney/ultrastructure , Pneumonia, Viral/pathology , Adult , Aged , Aged, 80 and over , COVID-19 , China , Female , Humans , Male , Middle Aged , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL